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The standard mathematical expression for the response functions of the linear 
response theory for Markovian stochastic systems, constructed from the corre- 
sponding Fokker-Planck equation, is transformed into an expression which is 
very suitable for numerical simulations. The method is applied to a stochastic 
model for superparamagnetism presented previously by the authors. For con- 
venient values of the parameters the model shows the phenomenon of stochastic 
r e s o n a n c e .  
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monodomain, stochastic resonance. 

1. L INEAR R E S P O N S E  OF S T O C H A S T I C  S Y S T E M S  

A superparamagnet ic  particle is an example of a mesoscopic physical 
system whose states are described by a set of variables which are r a n d o m  
functions of time, or stochastic processes (SP), which may be represented 
by an M-dimens iona l  vector X(t) = (Xt(t), X2(t) ..... XM(t)). In  the present 
work we restrict the t rea tment  to mesoscopic systems for which the X~(t) 
are Markov ian  SP described by a Langevin type of stochastic differential 
equation,~2~ 

M 

dXi(t) =Ai(X(t), t)dt+ ~, B0.(X(t), t)dWi(t) (1) 
.i = I 

where the coefficients Ai and Bgj are functions of the r a n d o m  variables and 
the time. The dWj(t)= Wi(t+dt)- Wj(t) are the infinitesimal increments 
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804 Ricci and Scherer 

of the orthogonal, normalized, Wiener processes Wi(t) (the intensity of the 
noise is included in the B o. coefficients). Therefore, (dW~(t))=O and 
(dW~(t) dWj(t)) = o~ o. dr, where ( ... ) means average over all realizations 
of the Wiener process. 

As is well known (e.g., ref. 2), the probability density P(x, t) for the SP 
X~(t) described by Eq.(1) obeys the following Fokker-Planck equation 
(FPE), 

0 
P(x, t ) =  s P(x, t) (2) 

where the "Fokker-Planck operator" s is given by (0; = O/c3xi) 

1'14 N 

s  OiAi(x,t)+ �89 ~. O~OiOo.(x,t ) 
i = l  i , . i =  I 

and 

(3) 

M 

Do= ~, BikBik 
k = l  

are the elements of the diffusion matrix. The transition probability density 
P(x, tlx' , t ') ,  also satisfies Eq. (2), with the special initial condition 
P(x, t ' lx ' ,  t ' )=  c~(x- x). 

In the next section we will study the response of a system of super- 
paramagnetic particles to a weak, oscillating applied field. For this reason 
we review now briefly the essential results of linear response theory and 
transform the standard result for the response functions ~3~ into a form more 
appropriate for numerical simulations. 

Consider the class of stochastic systems whose associated FPE satisfies 
the following conditions: 

(i) The diffusion coefficients are not explicitly time dependent, i.e., 
Du= D~i(x). 

(ii) The drift coefficients can be separated into a term linear in the 
applied fields Ei(t) and another that, if present, is independent of the Ei, i.e., 

M 

A~= ~ 7u(x) Fs(t ) +A~~ (4) 
i =  I 

These requirements are not too restrictive and this class of FPEs is vast 
enough to comprise a large number of phenomena in classical non- 
equilibrium statistical physics/2" 3~ In particular, requirement (ii) is always 
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satisfied in the limit of infinitesimal applied fields (linear response limit). If 
a static field F~ ~ is present it can be considered part of the system and its 
effect included in the A~~ 

The system is assumed in equilibrium with the static field F) ~ in the 
remote past, t = - m, so that its initial probability density p.,.,~O~(x) satisfies 
the unperturbed FPE 

with 

/L ,,(o, , 0 (5) 0 / " s t  I X )  = 

M M 

/ L o = - 2  8;A';~ Z O, OJDii(x) (6) 
i = 1  i . j = l  

The conditional probability density U~ t[ x p, 0), in the absence of 
perturbation and given the initial value X ( 0 ) = x P = ( x ~ ,  x2~',..., -.vP~,,vp 
satisfies the FPE Eq. (2) with/L o in place of s and formal solution 

P ' ( x ,  t l x/', O) = exp[ t/Lo] 6(x - x p) (7) 

Denoting by ~ Xi(tl xr) )o the expectation value of X~(t) in the absence 
of perturbation and given that X(0)=  x p, the above equation implies 

( X , ( t l x V ) ) o = f  x~exp[t/Lo] 6 ( x - x r )  d"~x=exp[s x f  (8) 

where we have used the identity 

f f ( x ) e x p [  t/Lo] g(x)datx - f g(x)exp[  t/L*o] f (x)d . f f  (9) 

which defines the adjoint operator/Lo* of/L, 

M 3,1 

/Lg= + ~ A',~ ~ Do(x)O, Oj (10) 
. i  = I i .  j = I 

Equation (8) tells us that expEt/Lo* ] may be interpreted as the envolu- 
tion operator for the expectation vahte of X(t). 

When a time-dependent perturbing field Fj(t) is applied, the change in 
the expectation value of X~(t), with respect to its unperturbed value, in the 
linear response limit; is 

( X,(t) ) - (Xi )o  = q~ ~j(t- t') Fj(t') dt' (11) 
. i  = I - ~;- 
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where the response functions q ~ i ( t - t ' )  are given by ~3~ 

A4 

cb~i(t t') Y" f xiexp(t t ')s t01 dMx . . . .  P,., (x)]  (12) 
k = l  

This standard formal expression for q~u(t) is not appropriate for 
numerical calculations. Moreover, it is usually very difficult to solve the 

p { o )  . unperturbed FPE to obtain the probability density .,., (x). Some limit 
cases for which the integration in Eq. (12) may be performed exactly, will 
be seen in the next section. For M>~2 a general analytical form for ~o~ P.,., (x) 
is available only if the unperturbed FPE satisfies detailed balance condi- 
tions (DBC)J 4~ For this case Graham ~5~ presents an expression for the 
response functions in the form of expectation values which may be used for 
numerical simulations. A more convenient expression which is both simpler 
and more generals because it does not depend on DBC may be derived as 
follows. 

Using Eq. (9) and performing an integration by parts, one can trans- 
form Eq. 12 into 

A/ 

~i/ ( t - t  ) =  ~ f " "  ' P,., tx))%.(x) 0 k { e x p [ ( t -  t') s x~} dMx (13) 

Equation (8) may be used in Eq. (13) to transform it further into the 
expression 

M 

�9 ~i(t)= y '  (~,~:i(x) Ok(X~(tlx))o)~,., (14) 
k = l  

where the symbol (..-)~,., indicates the average over the initial point x 
distributed according to the unperturbed stationary probability density 

Io~ X p,., ( ) .  In particular, ~0.(0) = (9,0.(x)).,.,. As we will see in the next section, 
Eq. (14) is very suitable for calculating the response functions by numerical 
simulations based on the Langevin equation (1), without the need of 
knowing e!,c,'(x). 

2. APPLICATION TO S U P E R P A R A M A G N E T S  

A superparamagnet is a material containing very fine ferromagnetic 
particles, whose volumes are sufficiently small for each particle to be a 
magnetic monodomain having, therefore, a magnetic moment It. The con- 
centration of magnetic particles in the material is sufficiently low for the 
interaction between them to be negligible. We define the spin of a particle 
by S--tt/L.,  where ),,. is the electronic gyromagnetic ratio. 
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The interaction energy of the particle's spin with the environment is 
V(S, t) = Vc~, + VA + VD, where Vc:~, is the interaction the applied field, VA 
is the magnetocrystalline energy due to the crystal anisotropy, and V~ is 
the magnetostatic energy corresponding to the interaction of S with the 
demagnetization field. It is convenient to define an effective magnetic field 
by H~r-- -OV/OS (we take ),~. = 1 for simplicity). The system also interacts 
with the thermal excitations of the crystalline lattice: phonons produce 
movements of electrical charges in the particle and these very rapidly fluc- 
tuating electrical currents exert torques on the spin S. We do not include 
this fluctuating interfction in V. Instead, we will treat it as a white noise 
torque F(t) .  The movement of S(t) under the influence of the lattice and 
effective field is known as Ndel relaxation~ 6~ A stochastic differential equa- 
tion of the Langevin type may then be written for S, 

dS 1~ S, ~ - =  ( t ) + F ( t )  (15) 

where f l  represents the deterministic part of the torque. In a previous 
paper on the subject c ~ we derived an equation of motion for a "classical 
spin" in the presence of relaxation and noise from a generalized Lagrangian 
formalism. In the limit of zero noise our result reproduces the Landau-  
Lifshitz equation for S( t ) ,  17~ 

dS 7(32)[ S x Hen_ - 2 Sx(SxH~n.) 1 (16) 
dt S 2 

where 2 is the relaxation constant, S is the magnitude of S, and ),(S 2) = 
$2/(2 2 + $2). In this equation, S is a constant of motion, which is a good 
approximation for not too small superparamagnetic particles. However, if 
the number of atomic spins making up S is not very large and the tem- 
perature is not too low, the fluctuations of S caused by the interaction of 
the atomic spins with the random currents may become important. A term 
of the form gqS) e3, where 03 is the unit vector in the direction of S, allows 
for changes in S. Assuming that these changes are small fluctuations 
around a most probable value So, we keep for gt only a linear term, i.e., 
~ - f l ( S - S o ) ,  where fl is called the longitudinal relaxation constant. With 
this generalization, the magmtude of S in the Landau-Lifshitz equation will 
always relax to So. The vector f~ in Eq. (15) is accordingly written as 

~ ( S , t ) = 7 ( S  2) S X H ~ n - - ~ - ~ 2 S x H ~ n . ) - f l ( S - S o ) O  3 (17) 

The characteristic time scale for the movement of S is ~ 10 -~~ sec, ~8~ 
while the characteristic time scale for the random torque F(t) is the 



808 Ricci and Scherer 

inverse frequency of the optical phonons, i.e., ~ 10 -~3 sec. Considering, 
moreover, that the random torque is the sum of the contributions of many 
independent phonons, we are led to treat it as Gaussian white noise. 
Therefore we need to specify only its first and second moments to define 
whole statistics. Assuming its Cartesian components to be statistically inde- 
pendent and isotropic, we may write ( F A t ) ) = 0  and ( F i ( t ) F j ( t ' ) ) =  
2D ~i j ( t - t ' ) ,  where i, j = x ,  y, z and D is the noise intensity. 

To apply the results of Section 2 on our superparamagnet, we write 
Eq. (15) in the form of Eq. (1). Defining the vector X = S ( t ) / S  o, whose 
modulus will be denoted by R, and writing the effective field as 
H e n - = H ' ( X ) + f i H ( t ) ,  where fill(t) is the perturbing field [Fj(t) in the 
notation of Eq. (4)], we come to the following identifications: 

,0, 3 A~ (X)=f l  X,+ ~ ),,7(X)H)~ (18) 
. i= I 

yij(X) = - ) ' (R  2) %kXk + _ ( X j X j - ~ o R  2) (19) 
k ! 

where eo. k is the Levi-Civita antisymmetric tensor and 

R 2 

)~ -J = R 2 + (2/So)'- 

B0= 6~,, ( ~ )  ''2 (20) 

_ 1 f , + , / ,  d W i ( t ) - - - ~ j  ' Ffl t ' )dt '  (21) 

In the limit of no fluctuations of R, i.e., for R ( t ) =  1, this model 
reduces to that proposed by Brown) 9~ To see which conditions our 
parameters have to satisfy for this limit to be achieved, we work with the 
longitudinal component of Eq. (15), namely 

(2D'~ t/2 
d R ( t ) = - f l ( R - 1 ) d t +  -zw dW3(t) (22) \s~) 

where dWs( t )= d3' dW(t) is the projection of the noise pin the direction 
of X. Using the relation 

es(t) = ? sin 0 cos ~ + ] sin 0 sin ~ + s cos 0 
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we find 

dW~(t)  = sin 0cos $ dW,.( t )  + sin 0 sin $ dW,.(t)  + cos 0 d W : ( t )  

Therefore R(t )  satisfies a stochastic differential equation with "multi- 
plicative noise." The transformation of coordinates was carried out using 
the rules of ordinary calculus, which means that Eq. (22) is to be under- 
stood as a Stratonovich-Langevin equation and therefore ( d W 3 ( t ) ) # 0 .  
The corresponding Ito-Langevin equation is ~2~ 

dR(t )  = - f l ( R -  1 ) + + -AT dW3(t )  

for which ( d W 3 ( t ) )  =0.  This equation does not depend on 0 or r and the 
corresponding one-dimensional FPE has the following stationary solution: 

G,.,(r) = Nor  2 exp[ - ( r -  1 )2/202] 

where ~ 2 _ D / f l S o .  Therefore this model reduces to Brown's model when 
D < 

We consider two cases of static field HmI(X): 

Case / .  A static, uniform magnetic field is applied along the z direc- 
tion and no other forces act on ~. The interaction energy between the 
applied field H ~~ in the z direction and the magnetic moment !1 is 
V~O~ _kL:ntol. 

Case II. There is a crystalline effective field derived from the 
magnetic crystalline anisotropy energy Vine(x) = Kv sin 2 0 = Kv(x  2 + y2)/r2, 
where 0 is the angle between ja(t) and the easy axis (the z-axis), and K is 
the anisotropy constant. Then 

2Kv 
H!, ~ - xz" 

. r 4  

2Kv 
H', ~ r~-a -- yz-' 

2Kv , 
H':~ = + 7 a -  z(x- + y'-) 

and no other torques act on p, 
In appendix A we show that for these cases the model does not satisfy 

DBC. 
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2 .1 .  Z e r o - N o i s e  L i m i t  

It is interesting to analyze Eq. (14) in the limit of zero intensity of the 
noise, D ~ 0. 

For both cases considered above we conclude straightforwardly by 
invoking the Langevin equation Eq. (1) that in this limit: 

(i) the magnitude of X(t) will be a constant, r = 1, so that the phase 
points will move over a unitary sphere. 

(ii) All realizations of X(t lx  p) converge in mean square (see, e.g., 
ref. 10) to the deterministic trajectory of the system, i.e., 

lim [ X i ( t l x l ' ) - x i ( t l x r ) ] ' - = O  
D ~  O 

where the function x i( t lx p) is the solution of Eq. (1) for Bii = O, A i=  A~i ~ 
and initial condition X(0)= x~'= (x~,, y~,, z~,). In both cases considered here 
we have obtained the deterministic trajectories (see Appendix B) and there- 
fore (X,(t  I x/'))o . 

(iii) In the absence of noise all solutions of the Langevin equation 
relax to a minimum-energy state; therefore the equilibrium probability 
density P!~~ will be the products of Dirac delta functions centered on 
the energy minima. 

The response function Eq. (14) and the susceptibility Eq. (25) will be 
considered separately for the two cases in the limit D--, 0. 

Case 1. The only energy minimum is for x = (0, 0, 1) and therefore 
U,.,~ p) = ~5(x,,) 6(yl, ) 6(z~, - 1). Using this distribution, identifying 
( Xj( t ] x r) ) o with the deterministic trajectory given in Appendix B, and using 
Eq. (19) for the )% we find that Eq. (14) is readily integrable, leading to 

1 
q~l i(t) = q022(t) = e-'/~ sin(coot + 60) u(t) (23) 

x/1 + (A/So) 2 

~bl2(t)= --~2|( t)  = 
x/1 + (A/So)-" 

e -'IT cos(coot + 6,)) u(t) (24) 

and ~13=tJ~23~---t~31=t~32=(~33~-0 where r = ( S o + 2 " - ) / A S o H ' ,  too= 
So/At, and 60 = arctan[2/So]. 

The complex admittances or susceptibility, defined as the Fourier- 
Laplace transform of ~ i ( t ) ,  

f( 
cr. 

Zo.(m) = ~bu(t) exp(imt) dt (25) 
) 
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is the function usually measured in resonance experiments. Its real and 
imaginary parts Z' and Z" may be easily obtained from Ou(t). For the 
present example 

1 
x',,(co) = s  

2[  1 + (,,1./So) -~ ] 

[ coo + co + 2/3 . coo-  + 2/3 ] 

x L (coo + o~)-" + ( I/3)-" + (coo - o_,)-" + ( l /3)-'J 
(26) 

I 
Z'h (co) = zg,_(co) - 

2[  1 + (2/So)-" ] 

r x(coo+co)-|l~ ~(co-O~o)_+l/3] 
(27) 

In the limit 2 ~ 0, z ~ or, thes results reduce to the well known expressions 
for ideal paramagnets, and for 2 = 0 and 3 = T_, they reproduce the results 
obtained from Bloch's equations. (~]~ 

Case IL There are two minima of the interaction energy, namely for 
la parallel or antiparallel to the z-axis. Therefore, 

P ! , , ~  = 6(xp)6(y,,)6(z~,- l )  

We obtain Oi2 = Ozl = Oi3 = O3, = 023 = 0 3 2  - -  1~33 - -  0 and �9 7 i(t) = O 2 2 ( t )  

given by Eq. (23), the same expression as for case I, but with 
r = (22 + So)/2Kv2S o and co o = So/2r. 

2.2. Numer ica l  S i m u l a t i o n s  and Resul ts  

To calculate Ou(t), Eq. (14), we must perform two ensemble averages, 
(X i ( t l x l ' ) )o  and ( . . . ) . , , .  Since we do not have the corresponding 
probability densities U~ t lx p, 0) and ~o) /, P~, ( x ) ,  we use an alternative 
procedure, based on numerical simulations of the realizations of the 
stochastic process, governed by the Langevin equation in the absence of 
the perturbing field Fi(t), i.e., keeping only the term A~i ~ of Ai. Equa- 
tion (1) in discrete form reads (-~1 

X i ( t , , + A t ) = X i ( t , , ) + A ~ ~  (28) 

where Rt(t,,) are random numbers with normal distribution, (Ri( t , , ) )  = O, 
and (Ri(t,,) R/(t,,,)) =Oug,,,,.. 

822/86/3~l-23 
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We begin by generating a s tat ionary distr ibution of  initial points  x p, 

say NP of them. Each x p may  be obtained by starting from some arbi trary 
posit ion in F, for example (1, 0, 0), and letting it evolve according to Eq. 
(28), for a sequence o f N x  M randomly  chosen numbers  Rj(t,,) ( j =  1 ..... M 
and t ,  = n At, where n = 0, 1, 2 ..... N), with the proper  statistics and with N 
and NP sufficiently large so that  the distribution of  the x p so obtained may  
be considered stationary. Each of  the N P  points x p is then used as starting 
point  for an ensemble of  NR realizations of  the stochastic process X driven 
again by Eq. (28). The arithmic average of  the N R  points X at time t is the 
expectation value < X ( t l x P ) ) 0  . Since we need for Eq. (14) the partial 
derivatives of  this expectation value with respect to the initial componen ts  
x~., k = l ..... M, we have to repeat the NR realizations M times, starting 
each time from a different point  x p + Axkdk very near to x p, (i.e., zlxk < 1 ), 

3.0 

o.o I 
(b) 

1.0 
(a) 

~ ] 0.0 

' -1.0 
25.0 50.0 0.0 

i 

"3"00.0 25.0 50.0 

1.0 1.0 

0.0 1 
0.0 

i 

-I .00. 0 25.0 50.0-I "%.0 25.0 

(d) 

50.0 

Fig. 1. Influence of the size of the ensemble on the calculation of the averages in Eq. (14) 
for q~lj(t) versus time for case !. (a-d) NP=NR=8,64, 256, and 512, respectively. The 
parameters are Q=SoH~n,/kHT= 1.0, 5=0.1,/~= 1.0, /)=0.01. 
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where E, is the unit vector in the k-direction. The partial derivative is then 
calculated as 

O < X;(tl xp + AxkOk)>o-- < Xi(tlxP)>o 
- -  <XAtlxP)>o ~- (29) 
Oxf. Axk 

The arithmetic average over the NP points x p of the product of this 
derivative by ~'ks summed over k is the response function r as given by 
Eq. (14). The complex admittance (25) may be obtained by computer help 
of the fast Fourier transform (FFT) routine. 

Using the superconductor CRAY Y-MP2E of our university, we made 
simulations for cases I and II considered above with several distinct values 
of NP, NR, and At. In all simulations the values AXp = Ayp = Azp = 0.05 

1.0 

0.0 

(a) 

I 

-1 "%.0 20.0 40.0 
6.0 

0.0 

"6"0-3,0 Ol.O 3.0 

6.0 

0.0 

i 

"6"03.0 0.0 3.0 

Fig. 2. (a)  q~l~(t) versus  time, (b) Z' versus  eJ. an d  (c) g" versus  (o for case 1, with 
Q =  1.0, ) , = 0 . t ,  [ / =  1.0; solid line: / ) = 0 ;  dot ted  line: /) = 0.02. 
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were used. To obtain the normally distributed random numbers Rj we used 
the ranf(.) function of the CRAY, which generates pseudo-random 
numbers uniformly distributed between 0 and 1 in a fully vectorized way 
and with a period equal to 2 4 6 ~  1013. The normally distributed numbers R/ 
were then obtained by the polar method. 1~2~ The enormous period of 
ranf(.) guarantees that the sequence of generated random numbers does 
not close it itself during a typical simulation. For example, for a rather 
rigorous simulation, using N P  = N R  = N T =  1000, where N T  is the number 
of steps of integration, we need 3 x 4 x N P  x N R  x N T =  1.2 x 10 t~ random 
numbers, still far from ranf(.)'s period. To put Eq. (28) into a form com- 
pletely dimensionless appropriate for numerical simulations, we used the 
following dimensionless quantities: f = (kR T/So) x t, P =  V/k e T, Jt = 2/So, 
f l= f l So / kAT ,  D = D / S o k I ~ T ,  and H =  -c~V/c3X. 

1.5 

I i 

"50.0 10.0 20.0 
4.0 

2.0 

0.0 

ii~i !i I (b) 

30.0 

I 

"2"0-3.0 0.0 3.0 
8.0 

i (c) 

,j 
0.0 

L 

-8'~3.0 0.0 3.0 

Fig. 3. Same as Fig. 2, but for fl=0.1. 
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To get a feeling for the effect of the size of the ensemble used for 
calculating the averages involved in Eq. (14), we show in Fig. I a sequence 
of results for O~ calculated for case I (external field), with different 
numbers of particles and realizations, keeping N P  = N R .  Figure l a shows 
the result of Eq. (14) obtained for a very poor averaging procedure, with 
only eight particles and eight realizations of the SP for each particle, i.e., 
N P = N R = 8 .  Figures l b - l d  show the ensemble averages for 
N P  = N R  = 64, 256, and 512, respectively. It can be seen that the last curve 
corresponds to rather good statistics. 

Figures 2 and 3 are also results of the simulations for case I, varying 
the parameters 1] (relaxation constant of longitudinal fluctuations) a n d / ~  
(noise intensity). The zero-noise limit, /~=0 ,  is shown in all figures by 
the solid lines. In Fig. 2 the dotted lines show the results for fl = 1 and 

1.2 

0.6 

0.0 

-0.6 

3.0 

, (a) 

i 

0.0 6.0 12.0 

(b) 
2.0 ~. ,, ,, 

1.0 ~ ,' '.' . 

0.0 

n i 

"--4.0 0.0 4.0 

3.0 

1.0 

-1.0 

-3.0 
-4.0 

1;: (c) 

i i '  

i 

0.0 4.0 

Fig. 4. Same as Fig. 2, but for case I I, Q =-Kv/k n T, ,~ = 0.2, and f l =  0.1; solid line: /~ = 0, 
dotted line: /5 = 0.01; dashed line: /~ = 0.02. 
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/3 = 0.02. With these values of the parameters there are no important 
longitudinal fluctuations and our model reduces to Brown's modelJ 9~ In 
Fig. 3 the dotted line is for f l=0.1 and /3=0 .02 .  Important  fluctuations in 
the magnitude of It occur for these values of the parameters. We see clearly 
that the noise enhances the response of the system to the transverse field. 
The influence of the noise on the response of a system to a deterministic 
signal, enhancing the resonance intensity, is a remarkable result. Similar 
phenomena, referred to as stochastic resonance, have been reported in the 
literature (e.g., ref. 13) and have aroused considerable interest during the 
last few years. Our results show that also in superparamagnetic systems 
stochastic resonance can be found as long as the particles are so small that 
important fluctuations in the magnitude of the magnetic moment should be 
expected. This is not the first time that stochastic resonance has been 
predicted theoretically in superparamagnets, but the present model, 
method of solution and results are very different from those of previous 
works.l~4. ~51 In the Brown model limit, Fig. 2, our results do not show 
evidence for stochastic resonance; in this case the noise has the effect of 
attenuating the resonance intensity, as we see in Fig. 2c. 

Figure 4 shows the results for case II, for f l=0.1 and 13=0 (solid 
line), /3=0.01 (dotted line) and /3=0.02 (dashed line). In this case one 
sees that the noise not only enhances the response of the system, but also 
decreases the resonance frequency. 

APPENDIX A 

Let us formulate the detailed balance conditions for the FPE in the 
usual way: c4t 

Given that, under time-reversal transformation, x - - , ex=(e t x~ ,  
e,_x2 ..... eMXM), with es= _ 1, then 

and 

M 
{0| tot eiAi (ex) P.~., (x) --A~~ {or = P~., (x) + ~' c3j[Oo(x) Pi.,~ 

j = l  

(A1) 

e~ejDu(ex) = Du(x) (A2) 

Since under time-reversal l a - - * - p  and therefore x ~ -  x, we have 
et = e 2 -  e3 = - 1 .  Then the condition (A1) can be written in the form 

3 

--.,., , - , - - ~  ~ 8j[D0.(x ) co, P,, (x)] 
j = l  
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where .4~i~ ' racolt,,~ alolt  5 , - i  ~ A , - - - i  ~ - x ) ] .  As the diffusion matr ix in this cas 
is not  singular, D,.7~ = 5uSo/2D, and we can invert the above equat ion to 
obtain 

s~ 21O,(x ) 0k[ln P~~ =-~ 

But it is easy to verify that  V x A # 0 for both  cases in Section 3. Therefore 
this equat ion cannot  be satisfied, since ist left-hand side is a gradient, and 
consequently Eq. (A1) is also not  satisfied. 

APPENDIX B 

In the absence of  noise (D = O) and knowing ACi~ we can integrate 
Eq. (1). We obtain for case I (uniform static magnetic field) 

s inh(t /r)  + Zp cosh(t / r)  
z ( t l x P ) -  

cosh(t / r )  + z n sinh(t /r)  

x( t l xP ) = v / 1  - z~ cos(cOot -- ~bl,) 
cosh(t / r )  + zp sinh(t /r)  

and 

where 

and 

y ( t l x P ) =  
x/1 - z e sin(cOot - ~bp) 

cosh(t / r )  + Zp sinh(t /r)  

So +~-" 
2H~~ 

So 
~ m  

coo 2r 

Fo r  the case II (uniaxial crystal field) we obtain 

z(tl x") - 

x ( t l x  p) - 

Zp 
[Zp + (1 -- zp) exp( - -2 t /z ) ]  x/2 

exp( -- t/r) 

[zp + (1 -- z~) exp( - -2 t / r ) ]  ,/z 

• [Xp cos g2(t, Ze) + yp sin t2(t, zp)] 
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and 

exp( -- t/r) 
Y(t I xP) = [z~, + (1 -- z~,) exp( --2t/r)] ,/2 

• [yp cos D(t, ze) + xp sin f2(t, zp)] 

where 

dr' 
12(t'zP)=~176 [Zp+( l -Zp)eXp( -2 t ' / r ) ]  '/2 

=-~- lnS~ {[l+z~,(e2'/~-l)]t/Z+zpe '/~ } l  +z. 

$2o + 2 2 
7:= 

2Kv2So 

So 
O) o = ~z  

Observe that/2(0, zp)=0, s _+I)= +o%t, and 

( 2z,, "~ s''/~ 
,lim =coot + In \1 + z J  
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